Quivers with relations for symmetrizable Cartan matrices III: Convolution algebras
نویسندگان
چکیده
منابع مشابه
Cluster Algebras and Semipositive Symmetrizable Matrices
Cluster algebras are a class of commutative rings introduced by Fomin and Zelevinsky. It is well-known that these algebras are closely related with different areas of mathematics. A particular analogy exists between combinatorial aspects of cluster algebras and Kac-Moody algebras: roughly speaking, cluster algebras are associated with skew-symmetrizable matrices while Kac-Moody algebras corresp...
متن کاملWeak Hopf algebras corresponding to Cartan matrices
We replace the group of group-like elements of the quantized enveloping algebra Uq(g) of a finite dimensional semisimple Lie algebra g by some regular monoid and get the weak Hopf algebra w q (g). It is a new subclass of weak Hopf algebras but not Hopf algebras. Then we devote to constructing a basis of w q (g) and determine the group of weak Hopf algebra automorphisms of w q (g) when q is not ...
متن کاملCluster Algebras of Finite Type and Positive Symmetrizable Matrices
The paper is motivated by an analogy between cluster algebras and Kac-Moody algebras: both theories share the same classification of finite type objects by familiar Cartan-Killing types. However the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac-Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to s...
متن کاملWeighted Convolution Measure Algebras Characterized by Convolution Algebras
The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.
متن کاملAlgorithms and Properties for Positive Symmetrizable Matrices
Matrices are the most common representations of graphs. They are also used for the representation of algebras and cluster algebras. This paper shows some properties of matrices in order to facilitate the understanding and locating symmetrizable matrices with specific characteristics, called positive quasi-Cartan companion matrices. Here, symmetrizable matrix are those which are symmetric when m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of the American Mathematical Society
سال: 2016
ISSN: 1088-4165
DOI: 10.1090/ert/487